Neural Network Encapsulation google
A capsule is a collection of neurons which represents different variants of a pattern in the network. The routing scheme ensures only certain capsules which resemble lower counterparts in the higher layer should be activated. However, the computational complexity becomes a bottleneck for scaling up to larger networks, as lower capsules need to correspond to each and every higher capsule. To resolve this limitation, we approximate the routing process with two branches: a master branch which collects primary information from its direct contact in the lower layer and an aide branch that replenishes master based on pattern variants encoded in other lower capsules. Compared with previous iterative and unsupervised routing scheme, these two branches are communicated in a fast, supervised and one-time pass fashion. The complexity and runtime of the model are therefore decreased by a large margin. Motivated by the routing to make higher capsule have agreement with lower capsule, we extend the mechanism as a compensation for the rapid loss of information in nearby layers. We devise a feedback agreement unit to send back higher capsules as feedback. It could be regarded as an additional regularization to the network. The feedback agreement is achieved by comparing the optimal transport divergence between two distributions (lower and higher capsules). Such an add-on witnesses a unanimous gain in both capsule and vanilla networks. Our proposed EncapNet performs favorably better against previous state-of-the-arts on CIFAR10/100, SVHN and a subset of ImageNet. …

Layered Self-Organizing Map (LSOM) google
This paper defines a new learning architecture, Layered Self-Organizing Maps (LSOMs), that uses the SOM and supervised-SOM learning algorithms. The architecture is validated with the MNIST database of hand-written digit images. LSOMs are similar to convolutional neural nets (covnets) in the way they sample data, but different in the way they represent features and learn. LSOMs analyze (or generate) image patches with maps of exemplars determined by the SOM learning algorithm rather than feature maps from filter-banks learned via backprop. LSOMs provide an alternative to features derived from covnets. Multi-layer LSOMs are trained bottom-up, without the use of backprop and therefore may be of interest as a model of the visual cortex. The results show organization at multiple levels. The algorithm appears to be resource efficient in learning, classifying and generating images. Although LSOMs can be used for classification, their validation accuracy for these exploratory runs was well below the state of the art. The goal of this article is to define the architecture and display the structures resulting from its application to the MNIST images. …

Conflict-free Asynchronous Machine Learning (CYCLADES) google
We present CYCLADES, a general framework for parallelizing stochastic optimization algorithms in a shared memory setting. CYCLADES is asynchronous during shared model updates, and requires no memory locking mechanisms, similar to HOGWILD!-type algorithms. Unlike HOGWILD!, CYCLADES introduces no conflicts during the parallel execution, and offers a black-box analysis for provable speedups across a large family of algorithms. Due to its inherent conflict-free nature and cache locality, our multi-core implementation of CYCLADES consistently outperforms HOGWILD!-type algorithms on sufficiently sparse datasets, leading to up to 40% speedup gains compared to the HOGWILD! implementation of SGD, and up to 5x gains over asynchronous implementations of variance reduction algorithms. …

Advertisements