Evolutionary Cost-Sensitive Deep Belief Network google
Imbalanced data with a skewed class distribution are common in many real-world applications. Deep Belief Network (DBN) is a machine learning technique that is effective in classification tasks. However, conventional DBN does not work well for imbalanced data classification because it assumes equal costs for each class. To deal with this problem, cost-sensitive approaches assign different misclassification costs for different classes without disrupting the true data sample distributions. However, due to lack of prior knowledge, the misclassification costs are usually unknown and hard to choose in practice. Moreover, it has not been well studied as to how cost-sensitive learning could improve DBN performance on imbalanced data problems. This paper proposes an evolutionary cost-sensitive deep belief network (ECS-DBN) for imbalanced classification. ECS-DBN uses adaptive differential evolution to optimize the misclassification costs based on training data, that presents an effective approach to incorporating the evaluation measure (i.e. G-mean) into the objective function. We first optimize the misclassification costs, then apply them to deep belief network. Adaptive differential evolution optimization is implemented as the optimization algorithm that automatically updates its corresponding parameters without the need of prior domain knowledge. The experiments have shown that the proposed approach consistently outperforms the state-of-the-art on both benchmark datasets and real-world dataset for fault diagnosis in tool condition monitoring. …

Constrained Policy Optimization (CPO) google
For many applications of reinforcement learning it can be more convenient to specify both a reward function and constraints, rather than trying to design behavior through the reward function. For example, systems that physically interact with or around humans should satisfy safety constraints. Recent advances in policy search algorithms (Mnih et al., 2016, Schulman et al., 2015, Lillicrap et al., 2016, Levine et al., 2016) have enabled new capabilities in high-dimensional control, but do not consider the constrained setting. We propose Constrained Policy Optimization (CPO), the first general-purpose policy search algorithm for constrained reinforcement learning with guarantees for near-constraint satisfaction at each iteration. Our method allows us to train neural network policies for high-dimensional control while making guarantees about policy behavior all throughout training. Our guarantees are based on a new theoretical result, which is of independent interest: we prove a bound relating the expected returns of two policies to an average divergence between them. We demonstrate the effectiveness of our approach on simulated robot locomotion tasks where the agent must satisfy constraints motivated by safety. …

Coevolutionary Neural Population Model google
We present a method for using neural networks to model evolutionary population dynamics, and draw parallels to recent deep learning advancements in which adversarially-trained neural networks engage in coevolutionary interactions. We conduct experiments which demonstrate that models from evolutionary game theory are capable of describing the behavior of these neural population systems. …