Deep Component Analysis (DeepCA) google
Despite a lack of theoretical understanding, deep neural networks have achieved unparalleled performance in a wide range of applications. On the other hand, shallow representation learning with component analysis is associated with rich intuition and theory, but smaller capacity often limits its usefulness. To bridge this gap, we introduce Deep Component Analysis (DeepCA), an expressive multilayer model formulation that enforces hierarchical structure through constraints on latent variables in each layer. For inference, we propose a differentiable optimization algorithm implemented using recurrent Alternating Direction Neural Networks (ADNNs) that enable parameter learning using standard backpropagation. By interpreting feed-forward networks as single-iteration approximations of inference in our model, we provide both a novel theoretical perspective for understanding them and a practical technique for constraining predictions with prior knowledge. Experimentally, we demonstrate performance improvements on a variety of tasks, including single-image depth prediction with sparse output constraints. …

Averaged One-Dependence Estimators (AODE) google
Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation. …

Treelogy google
We propose a novel tree classification system called Treelogy, that fuses deep representations with hand-crafted features obtained from leaf images to perform leaf-based plant classification. Key to this system are segmentation of the leaf from an untextured background, using convolutional neural networks (CNNs) for learning deep representations, extracting hand-crafted features with a number of image processing techniques, training a linear SVM with feature vectors, merging SVM and CNN results, and identifying the species from a dataset of 57 trees. Our classification results show that fusion of deep representations with hand-crafted features leads to the highest accuracy. The proposed algorithm is embedded in a smart-phone application, which is publicly available. Furthermore, our novel dataset comprised of 5408 leaf images is also made public for use of other researchers. …