Design of Portfolio of Stocks to Track an Index (sparseIndexTracking)
Computation of sparse portfolios for financial index tracking, i.e., joint selection of a subset of the assets that compose the index and computation of their relative weights (capital allocation). The level of sparsity of the portfolios, i.e., the number of selected assets, is controlled through a regularization parameter. Different tracking measures are available, namely, the empirical tracking error (ETE), downside risk (DR), Huber empirical tracking error (HETE), and Huber downside risk (HDR). See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the paper: K. Benidis, Y. Feng, and D. P. Palomar, ‘Sparse Portfolios for High-Dimensional Financial Index Tracking,’ IEEE Trans. on Signal Processing, vol. 66, no. 1, pp. 155-170, Jan. 2018. <doi:10.1109/TSP.2017.2762286>.

The Self-Controlled Case Series Method (SCCS)
Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <http://…/index.html>.

Dynamic Panel Threshold Model (dtp)
Compute the dynamic threshold panel model suggested by (Stephanie Kremer, Alexander Bick and Dieter Nautz (2013) <doi:10.1007/s00181-012-0553-9>) in which they extended the (Hansen (1999) <doi: 10.1016/S0304-4076(99)00025-1>) original static panel threshold estimation and the Caner and (Hansen (2004) <doi:10.1017/S0266466604205011>) cross-sectional instrumental variable threshold model, where generalized methods of moments type estimators are used.