Discriminative k-shot learning google
This paper introduces a probabilistic framework for k-shot image classification. The goal is to generalise from an initial large-scale classification task to a separate task comprising new classes and small numbers of examples. The new approach not only leverages the feature-based representation learned by a neural network from the initial task (representational transfer), but also information about the form of the classes (concept transfer). The concept information is encapsulated in a probabilistic model for the final layer weights of the neural network which then acts as a prior when probabilistic k-shot learning is performed. Surprisingly, simple probabilistic models and inference schemes outperform many existing k-shot learning approaches and compare favourably with the state-of-the-art method in terms of error-rate. The new probabilistic methods are also able to accurately model uncertainty, leading to well calibrated classifiers, and they are easily extensible and flexible, unlike many recent approaches to k-shot learning. …

Term Frequency – Inverse Document Frequency (TF-IDF,TFIDF) google
tf-idf, short for term frequency-inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus. It is often used as a weighting factor in information retrieval and text mining. The tf-idf value increases proportionally to the number of times a word appears in the document, but is offset by the frequency of the word in the corpus, which helps to control for the fact that some words are generally more common than others. Variations of the tf-idf weighting scheme are often used by search engines as a central tool in scoring and ranking a document’s relevance given a user query. tf-idf can be successfully used for stop-words filtering in various subject fields including text summarization and classification. One of the simplest ranking functions is computed by summing the tf-idf for each query term; many more sophisticated ranking functions are variants of this simple model. …

Continuous Time Autoregressive Moving Average (CARMA) google
We introduce the class of continuous-time autoregressive moving-average (CARMA) processes in Hilbert spaces. As driving noises of these processes we consider Levy processes in Hilbert space. We provide the basic definitions, show relevant properties of these processes and establish the equivalents of CARMA processes on the real line. Finally, CARMA processes in Hilbert space are linked to the stochastic wave equation and functional autoregressive processes.
Multivariate stochastic delay differential equations and CAR representations of CARMA processes