Sample Size Computations Controlling the Type-II Generalized Family-Wise Error Rate (rPowerSampleSize)
The significance of mean difference tests in clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. This package enables one to compute necessary sample sizes for single-step (Bonferroni) and step-wise procedures (Holm and Hochberg). These three procedures control the q-generalized family-wise error rate (probability of making at least q false rejections). Sample size is computed (for these single-step and step-wise procedures) in a such a way that the r-power (probability of rejecting at least r false null hypotheses, i.e. at least r significant endpoints among m) is above some given threshold, in the context of tests of difference of means for two groups of continuous endpoints (variables). Various types of structure of correlation are considered. It is also possible to analyse data (i.e., actually test difference in means) when these are available. The case r equals 1 is treated in separate functions that were used in Lafaye de Micheaux et al. (2014) <doi:10.1080/10543406.2013.860156>.
Embedded Conic Solver in R (ECOSolveR)
R interface to the Embedded COnic Solver (ECOS) for convex problems. Conic and equality constraints can be specified in addition to mixed integer problems.
Extreme Machine Learning (ELM) (ELMR)
Training and prediction functions are provided for the Extreme Learning Machine algorithm (ELM). The ELM use a Single Hidden Layer Feedforward Neural Network (SLFN) with random generated weights and no gradient-based backpropagation. The training time is very short and the online version allows to update the model using small chunk of the training set at each iteration. The only parameter to tune is the hidden layer size and the learning function.