Statistical models of text have become increasingly popular in statistics and com- puter science as a method of exploring large document collections. Social scientists often want to move beyond exploration, to measurement and experimentation, and make inference about social and political processes that drive discourse and content. In this paper, we develop a model of text data that supports this type of substantive re- search. Our approach is to posit a hierarchical mixed membership model for analyzing topical content of documents, in which mixing weights are parameterized by observed covariates. In this model, topical prevalence and topical content are speci ed as a sim- ple generalized linear model on an arbitrary number of document-level covariates, such as news source and time of release, enabling researchers to introduce elements of the experimental design that informed document collection into the model, within a gen- erally applicable framework. We demonstrate the proposed methodology by analyzing a collection of news reports about China, where we allow the prevalence of topics to evolve over time and vary across newswire services. Our methods help quantify the e ect of news wire source on both the frequency and nature of topic coverage. All the methods we describe are available as part of the open source R package stm. A model of text for experimentation in the social sciences
Document worth reading: “A model of text for experimentation in the social sciences”
16 Monday Nov 2015
Posted Documents
in