Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the predictions of several other learning algorithms. First, all of the other algorithms are trained using the available data, then a combiner algorithm is trained to make a final prediction using all the predictions of the other algorithms as additional inputs. If an arbitrary combiner algorithm is used, then stacking can theoretically represent any of the ensemble techniques described in this article, although in practice, a single-layer logistic regression model is often used as the combiner. Stacking typically yields performance better than any single one of the trained models. It has been successfully used on both supervised learning tasks (regression) and unsupervised learning (density estimation). It has also been used to estimate bagging’s error rate. It has been reported to out-perform Bayesian model-averaging. The two top-performers in the Netflix competition utilized blending, which may be considered to be a form of stacking. … Stacked Generalization (Blending) google