In probability theory, the Chinese restaurant process is a discrete-time stochastic process, analogous to seating customers at tables in a Chinese restaurant. Imagine a Chinese restaurant with an infinite number of circular tables, each with infinite capacity. Customer 1 is seated at an unoccupied table with probability 1. At time n + 1, a new customer chooses uniformly at random to sit at one of the following n + 1 places: directly to the left of one of the n customers already sitting at an occupied table, or at a new, unoccupied table. David J. Aldous attributes the restaurant analogy to Jim Pitman and Lester Dubins in his 1983 book. At time n, the value of the process is a partition of the set of n customers, where the tables are the blocks of the partition. Mathematicians are interested in the probability distribution of this random partition. … Chinese Restaurant Process google