Identifying biomarkers with predictive value for disease risk stratification is an important task in epidemiology. This paper describes an application of Bayesian linear survival regression to model cardiovascular event risk in diabetic individuals with measurements available on 55 candidate biomarkers. We extend the survival model to include data from a larger set of non-diabetic individuals in an e↵ort to increase the predictive performance for the diabetic subpopulation. We compare the Gaussian, Laplace and horseshoe shrinkage priors, and find that the last has the best predictive performance and shrinks strong predictors less than the others. We implement the projection predictive covariate selection approach of Dupuis and Robert (2003) to further search for small sets of predictive biomarkers that could provide costefficient prediction without significant loss in performance. In passing, we present a derivation of the projective covariate selection in Bayesian decision theoretic framework. Hierarchical Bayesian Survival Analysis and Projective Covariate Selection in Cardiovascular Event Risk Prediction