* Gaussian Approximation of Bayesian Binary Regression Models* (

**EPGLM**)

The main functions compute the expectation propagation approximation of a Bayesian probit/logit models with Gaussian prior. More information can be found in Chopin and Ridgway (2015). More models and priors should follow.

*(*

**Regression for Rank-Indexed Compositional Data****ocomposition**)

Regression model where the response variable is a rank-indexed compositional vector (non-negative values that sum up to one and are ordered from the largest to the smallest). Parameters are estimated in the Bayesian framework using MCMC methods.

*(*

**Tables so Beautifully Fine-Tuned You Will Believe It’s Magic****pixiedust**)

The introduction of the broom package has made converting model objects into data frames as simple as a single function. While the broom package focuses on providing tidy data frames that can be used in advanced analysis, it deliberately stops short of providing functionality for reporting models in publication-ready tables. pixiedust provides this functionality with a programming interface intended to be similar to ggplot2’s system of layers with fine tuned control over each cell of the table. Options for output include printing to the console and to the common markdown formats (markdown, HTML, and LaTeX). With a little pixiedust (and happy thoughts) tables can really fly.

*(*

**Anomalous time series package for R (ACM)****anomalous-acm**)

It is becoming increasingly common for organizations to collect very large amounts of data over time, and to need to detect unusual or anomalous time series. For example, Yahoo has banks of mail servers that are monitored over time. Many measurements on server performance are collected every hour for each of thousands of servers. A common use-case is to identify servers that are behaving unusually. Methods in this package compute a vector of features on each time series, measuring characteristics of the series. For example, the features may include lag correlation, strength of seasonality, spectral entropy, etc. Then a robust principal component decomposition is used on the features, and various bivariate outlier detection methods are applied to the first two principal components. This enables the most unusual series, based on their feature vectors, to be identified. The bivariate outlier detection methods used are based on highest density regions and alpha-hulls. For demo purposes, this package contains both synthetic and real data from Yahoo.

*(*

**Identify Global Objects in R Expressions****globals**)

Identifies global (‘unknown’) objects in R expressions by code inspection using various strategies, e.g. conservative or liberal. The objective of this package is to make it as simple as possible to identify global objects for the purpose of exporting them in distributed compute environments.