WAIC (the Watanabe-Akaike or widely applicable information criterion; Watanabe, 2010) can be viewed as an improvement on the deviance information criterion (DIC) for Bayesian models. DIC has gained popularity in recent years in part through its implementation in the graphical modeling package BUGS (Spiegelhalter, Best, et al., 2002; Spiegelhalter, Thomas, et al., 1994, 2003), but is known to have some problems, arising in part from it not being fully Bayesian in that it is based on a point estimate (van der Linde, 2005, Plummer, 2008). For example, DIC can produce negative estimates of the effective number of parameters in a model and it is not defined for singular models. WAIC is fully Bayesian and closely approximates Bayesian cross-validation. Unlike DIC, WAIC is invariant to parametrization and also works for singular models.
A Widely Applicable Bayesian Information Criterion … Watanabe-Akaike Information Criteria (WAIC)
If you did not already know: “Watanabe-Akaike Information Criteria (WAIC)”
30 Thursday Jul 2015
Posted What is ...
in