In econometrics, autoregressive conditional heteroskedasticity (ARCH) models are used to characterize and model observed time series. They are used whenever there is reason to believe that, at any point in a series, the error terms will have a characteristic size or variance. In particular ARCH models assume the variance of the current error term or innovation to be a function of the actual sizes of the previous time periods’ error terms: often the variance is related to the squares of the previous innovations. Such models are often called ARCH models (Engle, 1982), although a variety of other acronyms are applied to particular structures of model which have a similar basis. ARCH models are employed commonly in modeling financial time series that exhibit time-varying volatility clustering, i.e. periods of swings followed by periods of relative calm. ARCH-type models are sometimes considered to be part of the family of stochastic volatility models but strictly this is incorrect since at time t the volatility is completely pre-determined (deterministic) given previous values. … Autoregressive Conditional Heteroskedasticity (ARCH) google