Often times ‘batch effects’ are present in microarray data due to any number of factors, including e.g. a poor experimental design or when the gene expression data is combined from different studies with limited standardization. To estimate the variability of experimental effects including batch, a novel hybrid approach known as principal variance component analysis (PVCA) has been developed. The approach leverages the strengths of two very popular data analysis methods: first, principal component analysis (PCA) is used to efficiently reduce data dimension with maintaining the majority of the variability in the data, and variance components analysis (VCA) fits a mixed linear model using factors of interest as random effects to estimate and partition the total variability. The PVCA approach can be used as a screening tool to determine which sources of variability (biological, technical or other) are most prominent in a given microarray data set. Using the eigenvalues associated with their corresponding eigenvectors as weights, associated variations of all factors are standardized and the magnitude of each source of variability (including each batch effect) is presented as a proportion of total variance. Although PVCA is a generic approach for quantifying the corresponding proportion of variation of each effect, it can be a handy assessment for estimating batch effect before and after batch normalization. … Principal Variance Component Analysis (PVCA)

# If you did not already know: “Principal Variance Component Analysis (PVCA)”

**16**
*Thursday*
Jul 2015

Posted What is ...

in